Distributed Data Processing (DDP)

Definition und Erklärung

Reconnaître les actions sous-évaluées en un coup d'œil

Trusted by leading companies and financial institutions

BlackRock logoAllianz logoGoogle logoAnthropic logoBloomberg logoRevolut logoNASDAQ logoCoinbase logo
BlackRock logoAllianz logoGoogle logoAnthropic logoBloomberg logoRevolut logoNASDAQ logoCoinbase logo

TL;DR – Kurzdefinition

Zu den FAQs →

Distributed Data Processing (DDP): Distributed Data Processing (DDP), auf Deutsch Verteilte Datenverarbeitung, bezeichnet eine fortschrittliche Technologie, die es ermöglicht, große Mengen an Daten über mehrere Computer oder Server zu verarbeiten. Diese revolutionäre Methode der Datenverarbeitung hat insbesondere im Zeitalter des Internets der Dinge und der schnell wachsenden Datenmengen an Bedeutung gewonnen. Mit DDP können Unternehmen effizienter Daten verarbeiten und analysieren, um fundierte Entscheidungen in den Kapitalmärkten zu treffen. DDP basiert auf der Aufteilung der Datenverarbeitung auf mehrere Knoten oder Computer, die über ein Netzwerk miteinander verbunden sind. Jeder Knoten verfügt über eigene Rechenressourcen und kann eigenständig Aufgaben ausführen. Die Partitionierung der Daten ermöglicht eine parallele Verarbeitung, bei der jeder Knoten einen Teil der Daten gleichzeitig verarbeiten kann. Dadurch wird die Effizienz deutlich gesteigert und die Verarbeitungszeit erheblich verkürzt. Die Vorteile von DDP sind vielfältig. Zum einen ermöglicht die Technologie eine nahezu unbegrenzte Skalierbarkeit, da einfach weitere Knoten zum Netzwerk hinzugefügt werden können, um eine größere Datenverarbeitungskapazität zu erreichen. Zudem ist DDP äußerst zuverlässig, da bei Ausfall eines Knotens die anderen Knoten die Datenverarbeitung weiterführen können. Dies führt zu einer hohen Verfügbarkeit der Daten und reduziert das Risiko von Datenverlust. Darüber hinaus ist DDP äußerst flexibel und kann auf verschiedene Anwendungen innerhalb der Kapitalmärkte angewendet werden. Es ist besonders gut geeignet für Aufgaben wie datenintensive Analysen, maschinelles Lernen, komplexe Modellierung und Simulationen. DDP ermöglicht eine schnelle Verarbeitung großer Datenmengen und unterstützt somit Investoren bei der Untersuchung von Aktien, Krediten, Anleihen, Geldmärkten und Kryptowährungen. Insgesamt stellt DDP eine bahnbrechende Technologie dar, die Unternehmen dabei unterstützt, die Herausforderungen der modernen kapitalmarktorientierten Datenverarbeitung zu bewältigen. Die Nutzung von DDP kann zu besseren Entscheidungen, schnelleren Prozessen und letztendlich zu profitableren Investitionen führen. Eulerpool.com ist stolz darauf, diese innovative Technologie in sein Glossar aufzunehmen und Investoren somit eine umfassende Ressource für ihr Verständnis und ihre Anwendung in den Kapitalmärkten zur Verfügung zu stellen.

Ausführliche Definition

Distributed Data Processing (DDP), auf Deutsch Verteilte Datenverarbeitung, bezeichnet eine fortschrittliche Technologie, die es ermöglicht, große Mengen an Daten über mehrere Computer oder Server zu verarbeiten. Diese revolutionäre Methode der Datenverarbeitung hat insbesondere im Zeitalter des Internets der Dinge und der schnell wachsenden Datenmengen an Bedeutung gewonnen. Mit DDP können Unternehmen effizienter Daten verarbeiten und analysieren, um fundierte Entscheidungen in den Kapitalmärkten zu treffen. DDP basiert auf der Aufteilung der Datenverarbeitung auf mehrere Knoten oder Computer, die über ein Netzwerk miteinander verbunden sind. Jeder Knoten verfügt über eigene Rechenressourcen und kann eigenständig Aufgaben ausführen. Die Partitionierung der Daten ermöglicht eine parallele Verarbeitung, bei der jeder Knoten einen Teil der Daten gleichzeitig verarbeiten kann. Dadurch wird die Effizienz deutlich gesteigert und die Verarbeitungszeit erheblich verkürzt. Die Vorteile von DDP sind vielfältig. Zum einen ermöglicht die Technologie eine nahezu unbegrenzte Skalierbarkeit, da einfach weitere Knoten zum Netzwerk hinzugefügt werden können, um eine größere Datenverarbeitungskapazität zu erreichen. Zudem ist DDP äußerst zuverlässig, da bei Ausfall eines Knotens die anderen Knoten die Datenverarbeitung weiterführen können. Dies führt zu einer hohen Verfügbarkeit der Daten und reduziert das Risiko von Datenverlust. Darüber hinaus ist DDP äußerst flexibel und kann auf verschiedene Anwendungen innerhalb der Kapitalmärkte angewendet werden. Es ist besonders gut geeignet für Aufgaben wie datenintensive Analysen, maschinelles Lernen, komplexe Modellierung und Simulationen. DDP ermöglicht eine schnelle Verarbeitung großer Datenmengen und unterstützt somit Investoren bei der Untersuchung von Aktien, Krediten, Anleihen, Geldmärkten und Kryptowährungen. Insgesamt stellt DDP eine bahnbrechende Technologie dar, die Unternehmen dabei unterstützt, die Herausforderungen der modernen kapitalmarktorientierten Datenverarbeitung zu bewältigen. Die Nutzung von DDP kann zu besseren Entscheidungen, schnelleren Prozessen und letztendlich zu profitableren Investitionen führen. Eulerpool.com ist stolz darauf, diese innovative Technologie in sein Glossar aufzunehmen und Investoren somit eine umfassende Ressource für ihr Verständnis und ihre Anwendung in den Kapitalmärkten zur Verfügung zu stellen.

Häufig gestellte Fragen zu Distributed Data Processing (DDP)

Was bedeutet Distributed Data Processing (DDP)?

Distributed Data Processing (DDP), auf Deutsch Verteilte Datenverarbeitung, bezeichnet eine fortschrittliche Technologie, die es ermöglicht, große Mengen an Daten über mehrere Computer oder Server zu verarbeiten. Diese revolutionäre Methode der Datenverarbeitung hat insbesondere im Zeitalter des Internets der Dinge und der schnell wachsenden Datenmengen an Bedeutung gewonnen.

Wie wird Distributed Data Processing (DDP) beim Investieren verwendet?

„Distributed Data Processing (DDP)“ hilft dabei, Informationen einzuordnen und Entscheidungen an der Börse besser zu verstehen. Wichtig ist immer der Kontext (Branche, Marktphase, Vergleichswerte).

Woran erkenne ich Distributed Data Processing (DDP) in der Praxis?

Achte darauf, wo der Begriff in Unternehmensberichten, Kennzahlen oder Nachrichten auftaucht. In der Regel wird „Distributed Data Processing (DDP)“ genutzt, um Entwicklungen zu beschreiben oder Größen vergleichbar zu machen.

Welche typischen Fehler gibt es bei Distributed Data Processing (DDP)?

Häufige Fehler sind: falscher Vergleich (Äpfel mit Birnen), isolierte Betrachtung ohne Kontext und das Überinterpretieren einzelner Werte. Nutze „Distributed Data Processing (DDP)“ zusammen mit weiteren Kennzahlen/Infos.

Welche Begriffe sind eng verwandt mit Distributed Data Processing (DDP)?

Ähnliche Begriffe findest du weiter unten unter „Leserfavoriten“ bzw. verwandten Einträgen. Diese helfen, „Distributed Data Processing (DDP)“ besser abzugrenzen und im Gesamtbild zu verstehen.

Favoris des lecteurs dans le lexique boursier Eulerpool

Binnenschifffahrtsstraßenordnung (BinSchStrO)

Binnenschifffahrtsstraßenordnung (BinSchStrO) ist ein bundesweites Regelwerk, das die rechtlichen Rahmenbedingungen für die Binnenschifffahrt in Deutschland festlegt. Es umfasst Vorschriften für die Sicherheit und Leichtigkeit des Verkehrs auf den Binnenschifffahrtsstraßen, einschließlich...

GrEStG

GrEStG: Eine umfassende Definition des Begriffs Das GrEStG (Grunderwerbsteuergesetz) ist ein wesentliches Regelwerk, das in Deutschland die Besteuerung von Immobilienübertragungen regelt. Es handelt sich um ein Steuergesetz, das den Erwerb von...

Swing Trading

Swing Trading ist eine Strategie, bei der Trader versuchen, von kurzfristigen Schwankungen im Kurs eines Wertpapiers zu profitieren. Ziel des Swing Trading ist es, innerhalb von Tagen oder Wochen hohe...

internationale Mutter-Tochter-Beziehungen

Definition of "Internationale Mutter-Tochter-Beziehungen" ("International Parent-Subsidiary Relationships") Internationale Mutter-Tochter-Beziehungen ist ein Begriff, der sich auf die Geschäftsbeziehungen zwischen einem multinationalen Unternehmen (Muttergesellschaft) und seinen ausländischen Tochtergesellschaften bezieht. Diese Beziehungen spielen eine...

Hierarchie

Hierarchie beschreibt die strukturierte Organisation einer Gruppe von Elementen oder Individuen in aufsteigende oder absteigende Rangfolge, basierend auf ihren Autoritätsstufen, Verantwortlichkeiten und Machtbefugnissen. In Kapitalmärkten und insbesondere im Bereich des...

Staatenloser

Der Begriff "Staatenloser" bezieht sich auf eine Person, die keine Staatsangehörigkeit besitzt oder von keinem Staat als Bürger anerkannt wird. Ein Staatenloser steht somit außerhalb der rechtlichen und politischen Bindungen,...

mangels Zahlung

"Mangels Zahlung" ist ein rechtlicher Begriff, der im Bereich der Kapitalmärkte verwendet wird und sich auf eine Zahlungsunfähigkeit oder einen Zahlungsausfall bezieht. Wenn ein Schuldner seinen Zahlungsverpflichtungen nicht nachkommt, wird...

Fremdenpass

Fremdenpass - Definition, Bedeutung und Anwendung in den Kapitalmärkten In den Kapitalmärkten bezieht sich der Begriff "Fremdenpass" auf ein offizielles Dokument, das von einem ausstellenden Land an nicht-staatliche Investoren ausgegeben wird....

Beteiligungscontrolling

Beteiligungscontrolling – Definition und Bedeutung im Finanzbereich Das Beteiligungscontrolling ist ein zentraler Bestandteil des Controllings im Finanzbereich und befasst sich mit der Überwachung und Steuerung von Unternehmensbeteiligungen. Es umfasst die Planung,...

Modernisierungstheorien

Modernisierungstheorien sind theoretische Ansätze, die sich mit den Prozessen der gesellschaftlichen Modernisierung und Entwicklung auseinandersetzen. Sie stellen eine Erklärung und Analyse dar, wie Gesellschaften sich transformieren und modernisieren, indem sie...