Distributed Data Processing (DDP)

Definition und Erklärung

Reconnaître les actions sous-évaluées en un coup d'œil

Trusted by leading companies and financial institutions

BlackRock logoAllianz logoGoogle logoAnthropic logoBloomberg logoRevolut logoNASDAQ logoCoinbase logo
BlackRock logoAllianz logoGoogle logoAnthropic logoBloomberg logoRevolut logoNASDAQ logoCoinbase logo

TL;DR – Kurzdefinition

Zu den FAQs →

Distributed Data Processing (DDP): Distributed Data Processing (DDP), auf Deutsch Verteilte Datenverarbeitung, bezeichnet eine fortschrittliche Technologie, die es ermöglicht, große Mengen an Daten über mehrere Computer oder Server zu verarbeiten. Diese revolutionäre Methode der Datenverarbeitung hat insbesondere im Zeitalter des Internets der Dinge und der schnell wachsenden Datenmengen an Bedeutung gewonnen. Mit DDP können Unternehmen effizienter Daten verarbeiten und analysieren, um fundierte Entscheidungen in den Kapitalmärkten zu treffen. DDP basiert auf der Aufteilung der Datenverarbeitung auf mehrere Knoten oder Computer, die über ein Netzwerk miteinander verbunden sind. Jeder Knoten verfügt über eigene Rechenressourcen und kann eigenständig Aufgaben ausführen. Die Partitionierung der Daten ermöglicht eine parallele Verarbeitung, bei der jeder Knoten einen Teil der Daten gleichzeitig verarbeiten kann. Dadurch wird die Effizienz deutlich gesteigert und die Verarbeitungszeit erheblich verkürzt. Die Vorteile von DDP sind vielfältig. Zum einen ermöglicht die Technologie eine nahezu unbegrenzte Skalierbarkeit, da einfach weitere Knoten zum Netzwerk hinzugefügt werden können, um eine größere Datenverarbeitungskapazität zu erreichen. Zudem ist DDP äußerst zuverlässig, da bei Ausfall eines Knotens die anderen Knoten die Datenverarbeitung weiterführen können. Dies führt zu einer hohen Verfügbarkeit der Daten und reduziert das Risiko von Datenverlust. Darüber hinaus ist DDP äußerst flexibel und kann auf verschiedene Anwendungen innerhalb der Kapitalmärkte angewendet werden. Es ist besonders gut geeignet für Aufgaben wie datenintensive Analysen, maschinelles Lernen, komplexe Modellierung und Simulationen. DDP ermöglicht eine schnelle Verarbeitung großer Datenmengen und unterstützt somit Investoren bei der Untersuchung von Aktien, Krediten, Anleihen, Geldmärkten und Kryptowährungen. Insgesamt stellt DDP eine bahnbrechende Technologie dar, die Unternehmen dabei unterstützt, die Herausforderungen der modernen kapitalmarktorientierten Datenverarbeitung zu bewältigen. Die Nutzung von DDP kann zu besseren Entscheidungen, schnelleren Prozessen und letztendlich zu profitableren Investitionen führen. Eulerpool.com ist stolz darauf, diese innovative Technologie in sein Glossar aufzunehmen und Investoren somit eine umfassende Ressource für ihr Verständnis und ihre Anwendung in den Kapitalmärkten zur Verfügung zu stellen.

Ausführliche Definition

Distributed Data Processing (DDP), auf Deutsch Verteilte Datenverarbeitung, bezeichnet eine fortschrittliche Technologie, die es ermöglicht, große Mengen an Daten über mehrere Computer oder Server zu verarbeiten. Diese revolutionäre Methode der Datenverarbeitung hat insbesondere im Zeitalter des Internets der Dinge und der schnell wachsenden Datenmengen an Bedeutung gewonnen. Mit DDP können Unternehmen effizienter Daten verarbeiten und analysieren, um fundierte Entscheidungen in den Kapitalmärkten zu treffen. DDP basiert auf der Aufteilung der Datenverarbeitung auf mehrere Knoten oder Computer, die über ein Netzwerk miteinander verbunden sind. Jeder Knoten verfügt über eigene Rechenressourcen und kann eigenständig Aufgaben ausführen. Die Partitionierung der Daten ermöglicht eine parallele Verarbeitung, bei der jeder Knoten einen Teil der Daten gleichzeitig verarbeiten kann. Dadurch wird die Effizienz deutlich gesteigert und die Verarbeitungszeit erheblich verkürzt. Die Vorteile von DDP sind vielfältig. Zum einen ermöglicht die Technologie eine nahezu unbegrenzte Skalierbarkeit, da einfach weitere Knoten zum Netzwerk hinzugefügt werden können, um eine größere Datenverarbeitungskapazität zu erreichen. Zudem ist DDP äußerst zuverlässig, da bei Ausfall eines Knotens die anderen Knoten die Datenverarbeitung weiterführen können. Dies führt zu einer hohen Verfügbarkeit der Daten und reduziert das Risiko von Datenverlust. Darüber hinaus ist DDP äußerst flexibel und kann auf verschiedene Anwendungen innerhalb der Kapitalmärkte angewendet werden. Es ist besonders gut geeignet für Aufgaben wie datenintensive Analysen, maschinelles Lernen, komplexe Modellierung und Simulationen. DDP ermöglicht eine schnelle Verarbeitung großer Datenmengen und unterstützt somit Investoren bei der Untersuchung von Aktien, Krediten, Anleihen, Geldmärkten und Kryptowährungen. Insgesamt stellt DDP eine bahnbrechende Technologie dar, die Unternehmen dabei unterstützt, die Herausforderungen der modernen kapitalmarktorientierten Datenverarbeitung zu bewältigen. Die Nutzung von DDP kann zu besseren Entscheidungen, schnelleren Prozessen und letztendlich zu profitableren Investitionen führen. Eulerpool.com ist stolz darauf, diese innovative Technologie in sein Glossar aufzunehmen und Investoren somit eine umfassende Ressource für ihr Verständnis und ihre Anwendung in den Kapitalmärkten zur Verfügung zu stellen.

Häufig gestellte Fragen zu Distributed Data Processing (DDP)

Was bedeutet Distributed Data Processing (DDP)?

Distributed Data Processing (DDP), auf Deutsch Verteilte Datenverarbeitung, bezeichnet eine fortschrittliche Technologie, die es ermöglicht, große Mengen an Daten über mehrere Computer oder Server zu verarbeiten. Diese revolutionäre Methode der Datenverarbeitung hat insbesondere im Zeitalter des Internets der Dinge und der schnell wachsenden Datenmengen an Bedeutung gewonnen.

Wie wird Distributed Data Processing (DDP) beim Investieren verwendet?

„Distributed Data Processing (DDP)“ hilft dabei, Informationen einzuordnen und Entscheidungen an der Börse besser zu verstehen. Wichtig ist immer der Kontext (Branche, Marktphase, Vergleichswerte).

Woran erkenne ich Distributed Data Processing (DDP) in der Praxis?

Achte darauf, wo der Begriff in Unternehmensberichten, Kennzahlen oder Nachrichten auftaucht. In der Regel wird „Distributed Data Processing (DDP)“ genutzt, um Entwicklungen zu beschreiben oder Größen vergleichbar zu machen.

Welche typischen Fehler gibt es bei Distributed Data Processing (DDP)?

Häufige Fehler sind: falscher Vergleich (Äpfel mit Birnen), isolierte Betrachtung ohne Kontext und das Überinterpretieren einzelner Werte. Nutze „Distributed Data Processing (DDP)“ zusammen mit weiteren Kennzahlen/Infos.

Welche Begriffe sind eng verwandt mit Distributed Data Processing (DDP)?

Ähnliche Begriffe findest du weiter unten unter „Leserfavoriten“ bzw. verwandten Einträgen. Diese helfen, „Distributed Data Processing (DDP)“ besser abzugrenzen und im Gesamtbild zu verstehen.

Favoris des lecteurs dans le lexique boursier Eulerpool

Devisenmarktgleichgewicht

Devisenmarktgleichgewicht beschreibt den Zustand, in dem Angebot und Nachfrage nach ausländischen Währungen auf dem Devisenmarkt im Gleichgewicht sind. Es bezieht sich auf den Punkt, an dem der Wechselkurs einer Währung...

Verbindlichkeitenspiegel

Verbindlichkeitenspiegel: Definition, Erklärung und Nutzung in den Kapitalmärkten Der Begriff "Verbindlichkeitenspiegel" ist ein zentraler Bestandteil der Finanzberichterstattung für Unternehmen, insbesondere wenn es um ihre finanziellen Verpflichtungen und Schulden geht. In diesem...

Kosten-Wirksamkeits-Analyse

Die Kosten-Wirksamkeits-Analyse ist ein Einsatzcontrolling-Instrument in der Finanzwelt, das Unternehmen dabei unterstützt, die Effizienz ihrer Investitionen in Bezug auf den erzielten Nutzen zu bewerten. Sie ermöglicht eine gründliche Analyse der...

Earnings per Share (EPS)

Earnings per Share (EPS) – German (Deutsch) Definition Gewinn pro Aktie (EPS) – Eine Definition in hervorragendem Deutsch für Investoren in den Kapitalmärkten auf Eulerpool.com. Gewinn pro Aktie (EPS) ist eine der...

Kontaktbewertungskurve

Definition: Die Kontaktbewertungskurve ist ein wichtiges Analysewerkzeug, das in der Finanzbranche verwendet wird, um die Performance von Anleihen und anderen festverzinslichen Wertpapieren zu bewerten. Sie gibt Auskunft über die Beziehung...

Drittlandskooperation

"Drittlandskooperation" ist ein Begriff, der sich auf die Zusammenarbeit von Ländern außerhalb der Europäischen Union (EU) bezieht, insbesondere in Bezug auf finanzielle Angelegenheiten, Handelsabkommen und Investitionen. Diese Art der Kooperation...

auf Besicht

Auf Besicht is a common term in the world of capital markets, specifically in the context of trading and investing in securities. This German phrase translates to "on inspection" in...

soziale Nachhaltigkeit

Soziale Nachhaltigkeit ist ein Begriff, der in Bezug auf Investitionen in den Kapitalmärkten verwendet wird und auf die Berücksichtigung sozialer Faktoren bei der Bewertung von Anlagen abzielt. Es bezieht sich...

Freizeichnungsklausel

Die Freizeichnungsklausel ist eine rechtliche Bestimmung, die in Verträgen und Vereinbarungen im Bereich des Kapitalmarkts verwendet wird, um bestimmte Haftungsbeschränkungen für Anleger festzulegen. Sie ist ein Instrument zum Schutz von...

EPS

EPS steht für Earnings per Share, zu Deutsch Gewinn je Aktie. Es handelt sich um eine wichtige Kennzahl zur Bewertung von Unternehmen und gibt Aufschluss über den Anteil des Gewinns,...