Big Data

Definition und Erklärung

Reconheça ações subvalorizadas com um olhar

Trusted by leading companies and financial institutions

BlackRock logoAllianz logoGoogle logoAnthropic logoBloomberg logoRevolut logoNASDAQ logoCoinbase logo
BlackRock logoAllianz logoGoogle logoAnthropic logoBloomberg logoRevolut logoNASDAQ logoCoinbase logo

TL;DR – Kurzdefinition

Zu den FAQs →

Big Data: Big Data ist ein Begriff, der die Menge an Daten beschreibt, die in unserer heutigen digitalen Welt generiert wird und die traditionelle Datenverarbeitungskapazitäten übersteigt. Es bezieht sich auf eine Kombination aus strukturierten, unstrukturierten und halbstrukturierten Daten, die in einem raschen Tempo generiert werden und ein enormes Potenzial für die Analyse und Gewinnung von wertvollen Erkenntnissen bieten. Der Umfang von Big Data wird oft in den Vier V's beschrieben - Volume (Volumen), Velocity (Geschwindigkeit), Variety (Vielfalt) und Veracity (Echtheit). Das Volumen bezieht sich auf die enormen Datenmassen, die täglich erzeugt werden, sei es durch Transaktionen, soziale Medien, Gerätesensoren oder andere digitale Quellen. Die Geschwindigkeit bezieht sich auf die Geschwindigkeit, mit der diese Daten generiert und weitergeleitet werden, und die Anforderung, dass Echtzeitanalysen in vielen Fällen von entscheidender Bedeutung sind. Die Vielfalt bezieht sich auf die verschiedenen Arten von Datenquellen, einschließlich strukturierter Daten wie Tabellen und Datenbanken, unstrukturierter Daten wie Text und Bilder oder halbstrukturierter Daten wie E-Mails oder Logdateien. Die Bewältigung dieser Vielfalt stellt eine Herausforderung dar. Schließlich bezieht sich die Echtheit auf die Vertrauenswürdigkeit und Genauigkeit der Daten, da die Datenqualität von entscheidender Bedeutung für die Analyse und Auswertung ist. Die Analyse von Big Data kann für Kapitalmärkte und Investoren von unschätzbarem Wert sein. Sie ermöglicht es ihnen, Muster, Trends und Zusammenhänge zu erkennen, die in den vorliegenden Daten verborgen sind. Big Data Analytics bietet umfangreiche Möglichkeiten zur Identifizierung von Marktchancen und zur Vorhersage von Marktbewegungen. Durch die Analyse von Finanzdaten, Kundentrends und externen Quellen können Investoren Einblicke gewinnen, die ihre Investitionsentscheidungen verbessern und Risiken minimieren können. Die fortgeschrittenen Analysetechniken, die im Big Data-Bereich eingesetzt werden, umfassen maschinelles Lernen, künstliche Intelligenz und statistische Modelle. Durch den Einsatz dieser Techniken können Investoren Muster in den Daten identifizieren, Korrelationen erkennen und Vorhersagemodelle erstellen. Diese Modelle können helfen, Anlagestrategien zu optimieren und die Rentabilität zu verbessern. Es ist wichtig anzumerken, dass die Nutzung von Big Data auch Herausforderungen und Risiken birgt. Die Datenverarbeitung und -analyse erfordert spezielle Fähigkeiten und Infrastruktur sowie Datenschutz- und Sicherheitsvorkehrungen, um die Privatsphäre der Benutzer zu schützen. Zudem müssen sich Investoren bewusst sein, dass Big Data-Analysen aufgrund der Komplexität der Daten und der breiten Palette von Informationen nicht immer genaue Vorhersagen liefern können. Insgesamt eröffnet Big Data den Kapitalmärkten eine Welt neuer Möglichkeiten. Durch die umfassende Analyse und Interpretation großer und vielfältiger Datenmengen können Investoren bessere Entscheidungen treffen und wettbewerbsfähige Vorteile erzielen. Die Fortschritte in der Datenanalyse und -verarbeitung werden weiterhin eine wesentliche Rolle bei der Gestaltung der Zukunft der Kapitalmärkte und der Anlagestrategien spielen.

Ausführliche Definition

Big Data ist ein Begriff, der die Menge an Daten beschreibt, die in unserer heutigen digitalen Welt generiert wird und die traditionelle Datenverarbeitungskapazitäten übersteigt. Es bezieht sich auf eine Kombination aus strukturierten, unstrukturierten und halbstrukturierten Daten, die in einem raschen Tempo generiert werden und ein enormes Potenzial für die Analyse und Gewinnung von wertvollen Erkenntnissen bieten. Der Umfang von Big Data wird oft in den Vier V's beschrieben - Volume (Volumen), Velocity (Geschwindigkeit), Variety (Vielfalt) und Veracity (Echtheit). Das Volumen bezieht sich auf die enormen Datenmassen, die täglich erzeugt werden, sei es durch Transaktionen, soziale Medien, Gerätesensoren oder andere digitale Quellen. Die Geschwindigkeit bezieht sich auf die Geschwindigkeit, mit der diese Daten generiert und weitergeleitet werden, und die Anforderung, dass Echtzeitanalysen in vielen Fällen von entscheidender Bedeutung sind. Die Vielfalt bezieht sich auf die verschiedenen Arten von Datenquellen, einschließlich strukturierter Daten wie Tabellen und Datenbanken, unstrukturierter Daten wie Text und Bilder oder halbstrukturierter Daten wie E-Mails oder Logdateien. Die Bewältigung dieser Vielfalt stellt eine Herausforderung dar. Schließlich bezieht sich die Echtheit auf die Vertrauenswürdigkeit und Genauigkeit der Daten, da die Datenqualität von entscheidender Bedeutung für die Analyse und Auswertung ist. Die Analyse von Big Data kann für Kapitalmärkte und Investoren von unschätzbarem Wert sein. Sie ermöglicht es ihnen, Muster, Trends und Zusammenhänge zu erkennen, die in den vorliegenden Daten verborgen sind. Big Data Analytics bietet umfangreiche Möglichkeiten zur Identifizierung von Marktchancen und zur Vorhersage von Marktbewegungen. Durch die Analyse von Finanzdaten, Kundentrends und externen Quellen können Investoren Einblicke gewinnen, die ihre Investitionsentscheidungen verbessern und Risiken minimieren können. Die fortgeschrittenen Analysetechniken, die im Big Data-Bereich eingesetzt werden, umfassen maschinelles Lernen, künstliche Intelligenz und statistische Modelle. Durch den Einsatz dieser Techniken können Investoren Muster in den Daten identifizieren, Korrelationen erkennen und Vorhersagemodelle erstellen. Diese Modelle können helfen, Anlagestrategien zu optimieren und die Rentabilität zu verbessern. Es ist wichtig anzumerken, dass die Nutzung von Big Data auch Herausforderungen und Risiken birgt. Die Datenverarbeitung und -analyse erfordert spezielle Fähigkeiten und Infrastruktur sowie Datenschutz- und Sicherheitsvorkehrungen, um die Privatsphäre der Benutzer zu schützen. Zudem müssen sich Investoren bewusst sein, dass Big Data-Analysen aufgrund der Komplexität der Daten und der breiten Palette von Informationen nicht immer genaue Vorhersagen liefern können. Insgesamt eröffnet Big Data den Kapitalmärkten eine Welt neuer Möglichkeiten. Durch die umfassende Analyse und Interpretation großer und vielfältiger Datenmengen können Investoren bessere Entscheidungen treffen und wettbewerbsfähige Vorteile erzielen. Die Fortschritte in der Datenanalyse und -verarbeitung werden weiterhin eine wesentliche Rolle bei der Gestaltung der Zukunft der Kapitalmärkte und der Anlagestrategien spielen.

Häufig gestellte Fragen zu Big Data

Was bedeutet Big Data?

Big Data ist ein Begriff, der die Menge an Daten beschreibt, die in unserer heutigen digitalen Welt generiert wird und die traditionelle Datenverarbeitungskapazitäten übersteigt. Es bezieht sich auf eine Kombination aus strukturierten, unstrukturierten und halbstrukturierten Daten, die in einem raschen Tempo generiert werden und ein enormes Potenzial für die Analyse und Gewinnung von wertvollen Erkenntnissen bieten.

Wie wird Big Data beim Investieren verwendet?

„Big Data“ hilft dabei, Informationen einzuordnen und Entscheidungen an der Börse besser zu verstehen. Wichtig ist immer der Kontext (Branche, Marktphase, Vergleichswerte).

Woran erkenne ich Big Data in der Praxis?

Achte darauf, wo der Begriff in Unternehmensberichten, Kennzahlen oder Nachrichten auftaucht. In der Regel wird „Big Data“ genutzt, um Entwicklungen zu beschreiben oder Größen vergleichbar zu machen.

Welche typischen Fehler gibt es bei Big Data?

Häufige Fehler sind: falscher Vergleich (Äpfel mit Birnen), isolierte Betrachtung ohne Kontext und das Überinterpretieren einzelner Werte. Nutze „Big Data“ zusammen mit weiteren Kennzahlen/Infos.

Welche Begriffe sind eng verwandt mit Big Data?

Ähnliche Begriffe findest du weiter unten unter „Leserfavoriten“ bzw. verwandten Einträgen. Diese helfen, „Big Data“ besser abzugrenzen und im Gesamtbild zu verstehen.

Favoritos dos Leitores no Dicionário da Bolsa Eulerpool

Alleinvertretungsvertrag

Der Alleinvertretungsvertrag ist eine rechtliche Vereinbarung zwischen einer Firma und einer Person oder einer anderen Organisation, die die Befugnis erhält, im Namen der Firma zu handeln und Verpflichtungen einzugehen. Diese...

Solidaritätsfonds

Der Solidaritätsfonds ist ein Finanzinstrument, das in erster Linie zur Bewältigung von wirtschaftlichen und sozialen Herausforderungen eingesetzt wird. Es handelt sich um einen Fonds, der von Regierungen, internationalen Organisationen oder...

Deaton

Der Deaton bezieht sich auf einen Wirtschaftsabschnitt, der sich mit dem Verhältnis zwischen dem verfügbaren Einkommen und den Ausgaben der Verbraucher befasst. Diese Kennzahl gilt als wichtiger Indikator für die...

Rechtsmittelverzicht

Rechtsmittelverzicht ist ein rechtlicher Begriff, der sich auf die ausdrückliche Zustimmung einer Partei bezieht, auf das Recht zu verzichten, gegen eine gerichtliche Entscheidung oder einen Schiedsspruch Berufung einzulegen. In Deutschland...

WA

WA steht für "gewichteter Durchschnitt" und ist ein grundlegendes Konzept in der Finanzwelt, insbesondere in den Bereichen Investment- und Kapitalmärkte. Bei der Berechnung des WA werden verschiedene Faktoren berücksichtigt, um...

Orderbuch

Das Orderbuch ist ein Begriff, der im Zusammenhang mit dem Handel von Wertpapieren verwendet wird. Es ist eine elektronische Aufzeichnung aller Kauf- und Verkaufsaufträge für eine bestimmte Aktie oder ein...

Auflage, verteilte

Die Auflage, verteilte ist ein Begriff, der im Bereich der Kapitalmärkte verwendet wird und sich auf die Verteilung von Investmentfondsanteilen an potenzielle Anleger bezieht. Bei dieser Art von Investmentfonds werden...

Debt Equity Swap

Debt Equity Swap (Schuldverschreibungsumtausch) ist eine Transaktion, bei der ein Unternehmen seine ausstehenden Schulden mit Eigenkapitalinstrumenten, wie beispielsweise Aktien, anstelle von Geldmitteln begleicht. Diese Strategie wird oft von Unternehmen verwendet,...

Haager Abkommen

Haager Abkommen bezieht sich auf eine Reihe von internationalen Vereinbarungen, die in Den Haag, Niederlande, unterzeichnet wurden. Diese Abkommen haben das Ziel, grenzüberschreitende rechtliche Angelegenheiten zu regeln und die Zusammenarbeit...

ATLAS

ATLAS steht für "Automatisiertes Tarif- und Lokales Zollabwicklungssystem" und ist ein elektronisches System, das von der Zollbehörde zur Erfassung und Kontrolle von Gütern bei der Ein- und Ausfuhr eingesetzt wird....